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Abstract
We study coupled transport in the nonequilibrium stationary state of a model
consisting of independent random walkers, moving along a one-dimensional
channel, which carry a conserved energy-like quantity, with density and
temperature gradients imposed by reservoirs at the ends of the channel. In
our model, walkers interact with other walkers at the same site by sharing
energy at each time step, but the amount of energy carried does not affect the
motion of the walkers. We find that already in this simple model long-range
correlations arise in the nonequilibrium stationary state which are similar to
those observed in more realistic models of coupled transport. We derive an
analytical expression for the source of these correlations, which we use to
obtain semi-analytical results for the correlations themselves assuming a local-
equilibrium hypothesis. These are in very good agreement with results from
direct numerical simulations.

PACS numbers: 66.10.cd, 05.60.Cd, 05.70.Ln, 05.40.Fb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Two related outstanding problems at the heart of nonequilibrium statistical mechanics are the
structure of the probability distribution function in the stationary state and the derivation of
macroscopic transport laws, such as Fourier’s law of heat conduction, from microscopic
dynamics, for systems which are maintained out of equilibrium by the imposition of
thermodynamic fluxes [1–3].

For certain classes of stochastic mass-transport equations, known as zero-range processes,
in which the dynamics of mass leaving a site depends only on the occupation number at that
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site, the stationary-state distribution is known to factorize into the product of single-site
distributions under certain conditions, which enables many analytical results to be obtained
[4]. However, for more complicated models, this distribution no longer factorizes. In this case,
the appropriate characterization of the stationary-state distribution becomes a central goal for
the description of these systems. Furthermore, the fact that the distribution does not factorize
implies the existence of spatial correlations between different sites, as has been discussed in
many previous works [5, 6]. These spatial correlations in nonequilibrium states have been
studied at a mescoscopic level using fluctuating hydrodynamics [6]. Generically, they tend to
be of long range, spanning the whole length of the system, rather than decaying exponentially
as in equilibrium systems away from critical points.

From a microscopic point of view, the correlations arising in nonequilibrium stationary
states have already been studied in many simple models, including a stochastic master equation
describing heat flow [7], oscillators which exchange energy [8], lattice gases with exclusion
[9, 10] and lattice-gas cellular automata [11]. Also, exact results for all correlation functions
were found using a matrix technique for the symmetric simple exclusion process: see e.g. [12]
for a recent review, where the relation of long-range correlations with a non-local free-energy
functional is also discussed. An approximation of the invariant measure using Gaussians in a
suitably rotated coordinate system has recently been obtained [13, 14], and related analytical
results were previously found by Suárez et al [11], for the case where transport is by particles
with exclusion, but with a single conserved quantity.

In particular, long-range correlations in the so-called random-halves model [15] of
coupled matter and heat transport were recently studied in [16], principally heuristically
and numerically. The model we study in this paper can be considered to be a simplified
version of the random-halves model, still containing two explicitly conserved quantities. The
simplification enables us to obtain an explicit expression for the source of the correlations in
the nonequilibrium stationary state of the system.

Although our model suppresses much of the physical meaning of the second conserved
quantity, in addition to mass, which in [16] can really be viewed as corresponding to energy,
we emphasize that the structure of the spatial correlations that we observe for this energy-like
quantity is remarkably similar to that found in [16].

In this paper, we study the equilibrium and nonequilibrium stationary states of the model.
In regard to the nonequilibrium stationary state, we obtain the transport equations for the
energy and mass, and we obtain the equation satisfied by the spatial energy correlations that
arise in the model. This equation has a non-closed form. To close the hierarchy, we make
a local equilibrium assumption, which enables an analytical evaluation of the form of the
correlation source terms. We are then left with an approximate discrete Poisson equation with
source terms for the correlations. We find very good agreement between the solution of this
equation with numerical simulations of the system.

2. Coupled transport model

In this section, we introduce the model of transport which we study. It is, perhaps, one of
the simplest stochastic models exhibiting coupled transport. The transported quantities are
particles (mass), and a second quantity, which is locally conserved, which the particles carry
with them when they move. For simplicity of exposition, we refer to this second quantity as
‘energy’, although we emphasize that it does not necessarily have the physical characteristics
of an energy since the motion of the walkers is independent of the value of the energy which
they carry.
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Specifically, the model consists of independent random walkers moving on a one-
dimensional chain of L sites. The system is open and is in contact with particle and energy
baths at each end of the chain, which at each time step supply or remove particles from the
system with a given rate and energy distribution corresponding to their density and temperature,
respectively.

The walkers move synchronously in discrete time: at each time step, each walker
independently attempts to jump to one of its two neighbouring sites or remains at the same
site. If a walker successfully jumps, then it carries with it an amount of energy s from the total
amount of energy E at its previous site.

After all particles have attempted their jumps, the total energy at each site, that is, the sum
of the individual energies of the walkers at that site, is redistributed among all the particles
at that site, in a ‘random’ (microcanonical) way, which we specify below. We thus have a
complete (infinite) separation of time scales: energy equilibration at each site is completed
before the particles move again. This separation of time scales is, in part, what enables us
to proceed with the analysis of the system. Further, it ensures that we can always use a
local equilibrium hypothesis, in the sense that all thermodynamic quantities are always well
defined at every site and that they are related to each other according to the usual (equilibrium)
thermodynamic relations.

As mentioned above, our model is related to the recently introduced random-halves
model [15, 16], designed to model, rather faithfully, the Hamiltonian dynamics underlying the
transport phenomena observed in [17, 18]. In the random-halves model, each particle jumps
to a neighbouring site with a rate which is proportional to the square root of its kinetic energy,
and which is a factor δ times the rate at which a particle exchanges a random fraction of its
energy with a reservoir located at its current position.

Taking the limit δ → 0 in the random-halves model corresponds to our limit of infinite
separation of time scales, the other particles at that site acting as the reservoir. However, the
random-halves model includes extra effects which our model cannot account for: for example,
in the random-halves model, it is possible to have sites with particles at very low energy, and
since the jump rate is energy dependent, these particles may remain a long time at that site
unless other very energetic particles arrive there. Nonetheless, as we shall see, these kind of
effects do not appear to affect the qualitative results on correlations.

Although we do not consider it in this work, it should be noted that if we make the
jump probabilities p and q very small (of order 1/N , where N represents the number of
particles in the system), we effectively recover single-particle motion, as in continuous-time
dynamics, that is, on average, only one particle moves at each time step. Furthermore, in this
case, we could unambiguously consider jumping probabilities that are functions of the energy
of the single moving particle, which could yield a model closer to that considered in [16].
However, such modifications render the system intractable and do not appear to be a necessary
ingredient for the presence of long-range correlations in the nonequilibrium stationary
states.

2.1. Master equation

We now proceed to specify the model precisely. We consider an arbitrary number of random
walkers which can occupy sites on a finite one-dimensional chain of sites, labelled by
i ∈ {1, . . . , L}. The system is open and is in contact with particle and energy baths at
sites 0 and L + 1. The baths have mean particle densities ρ0 and ρL+1 and are at temperatures
T0 and TL+1. This means that the number of particles available in each bath is drawn from a
Poisson distribution with means ρ0 and ρL+1, respectively, at each time step, and the energy E
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carried by each particle leaving a bath at temperature T has a Boltzmann distribution at that
temperature, P(E) = 1

T
e−E/T .

Let ni and Ei be the number of particles and the total energy at site i at time t + 1, and
mi and ei the corresponding quantities at time t. The walkers can jump to the right with
probability p, jump to the left with probability q, or remain where they are with probability
r := 1 − (p + q). The number of walkers which jump right from site i at a given time step
is a random variable denoted by l+

i , and similarly, the number jumping left from that site is
denoted by l−i . All walkers jump simultaneously.

Each walker carries a certain amount of energy with it when it jumps. After each step,
the new total energy Ei at a site i is distributed randomly among the ni walkers at that site,
according to a ‘microcanonical distribution’. The total amount of energy carried by the walkers
which move from site i to the right is denoted by s+

i , and to the left by s−
i .

The master equation describing the time evolution of this system is then given by

Pt+1(n1, E1; n2, E2; . . . ; nL,EL)

=
∑
{mi }

∑
{l±i }

∫
{ei }

dei

∫
{s±

i }
ds±

i Pt (m1, e1;m2, e2; . . . ;mL, eL)

×
∏

i

δ
(
ni − [

mi +
(
l+
i−1 + l−i+1

) − (
l+
i + l−i

)])
×

∏
i

δ
(
Ei − [

ei +
(
s+
i−1 + s−

i+1

) − (
s+
i + s−

i

)])
×

∏
i

P
(
s+
i , s−

i

∣∣ l+
i , l−i , mi, ei

) ×
∏

i

P
(
l+
i , l−i

∣∣mi

)
. (2.1)

The delta functions reflect the fact that the new occupation numbers and energies are obtained
from the old ones by the movements at that time step. The conditional probabilities appearing
in the last line of this equation denote the probability densities for the number of walkers and
total energy moving left and right, and are given by

P
(
l+
i , l−i

∣∣ mi

)
:=

(
mi

l+
i

) (
mi − l+

i

l−i

)
pl+

i ql−i rmi−l+
i −l−i (2.2)

P
(
s+
i , s−

i

∣∣ l+
i , l−i , mi, ei

)
:= �(mi)

�
(
l+
i

)
�

(
l−i

)
�

(
mi − l+

i − l−i
)(

s+
i

)l+
i −1(

s−
i

)l−i −1

×
(
ei − s+

i − s−
i

)mi−l+
i −l−i −1

e
mi−1
i

. (2.3)

The first is a trinomial distribution which gives the probability of moving exactly l+
i particles

to the right and l−i to the left, out of the mi particles at site i. The second ‘multivariate
beta distribution’ is chosen to reflect the partitioning of the energy amongst the l+

i , l−i and
the remaining mi − l+

i − l−i particles, under the assumption that within each site the particles
behave as a two-dimensional ideal gas.

The ‘ideality’ of the gas at each site is manifested by the fact that the distribution can be
written exactly in terms of products of appropriate phase space volumes, while the value of the
exponents reflects the fact that the gas is two dimensional; details are given in the appendix.
This particular distribution was chosen because it yields slightly simpler expressions (than,
say, one- or three-dimensional ideal gases) and is closer to the intrinsic two-dimensional nature
of various previous models for coupled transport.
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2.2. Equilibrium state

It is known [19] that many non-interacting walkers, even when subjected to a density gradient,
attain a stationary state which factorizes: the probability of having occupation numbers
n := (n1, . . . , nL) is given by the following product of Poisson distributions at each site:

P(n) =
L∏

i=1

P(ni), (2.4)

where

P(ni) = e−ρi ρ
ni

i

ni!
, (2.5)

with ρi the mean occupation number at site i. The ρi satisfy a discrete diffusion equation,
which in the stationary state becomes ρi = pρi−1 + qρi+1 + rρi and which can be solved in
terms of the boundary conditions.

Suppose now that there is no gradient of temperature imposed at the boundaries of our
model for coupled transport, i.e. T0 = TL+1 = T . Then it turns out that the joint probability
distribution of having energy Ei and ni particles at sites i = 1, 2, . . . is also given by a
factorized distribution:

P(E; n) =
L∏

i=1

P(ni)P (Ei |ni), (2.6)

where the conditional probability to have energy E at a site with n particles is given by

P(E|n) = βnEn−1 e−βE

�(n)
, (2.7)

where β := 1/T . (We take units such that the Boltzmann constant kB = 1 throughout the
paper.) This distribution can be interpreted as �(E, n) e−βE/Z(β, n), where �(E, n) is the
volume of phase space accessible to a two-dimensional ideal gas of n particles at total energy
E, and Z(β, n) is the partition function.

The mean energy for this equilibrium distribution is 〈E|n〉 = n/β, so that in equilibrium
the mean energy at a site with mean concentration ρ is ρ/β = ρT . Since the distribution
of energy is that of a system with temperature T, we can unambiguously identify β with the
inverse temperature.

That the distribution factorizes in equilibrium can be verified by assuming that the solution
has a form as given in (2.6) as an ansatz. It then transpires that the only way it can do so
is if the temperature profile is flat. Hence, in the presence of a temperature gradient, the
joint distribution P(E; n) of all energies and positions does not factorize, and thus spatial
correlations are present.

3. Thermodynamics

In this section, we study the thermodynamic properties of the system. This is straightforward
since, by construction, at each time step the system reaches a microcanonical equilibrium at
each site i, characterized by the number of particles, ni , and the energy, Ei , found at that site.

Since we assume that at each site the particles are a two-dimensional ideal gas, and
account for the indistinguishability of the particles, the classical entropy at each site is given
by

Si = ni ln

(
V Ei

n2
i

)
+ nisi, (3.1)
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where V is the volume (actually, the area) available for the gas at each site, which we take as
unity (V = 1), and si is a constant, in the sense that it is independent of the thermodynamic
variables, though it may vary from one site to another (see the appendix).

Having the fundamental relation (3.1), we can proceed to obtain the equations of state for
the intensive variables in the entropy representation [20]:

1

Ti

=
(

∂Si

∂Ei

)
Ni

= ni

Ei

(3.2)

and
−μi

Ti

=
(

∂Si

∂Ni

)
Ei

= ln

(
Ei

n2
i

)
+ νi, (3.3)

where νi := si − 2 is a constant, which again may have different values at different sites.
These expressions will be useful further on, in connection with the Onsager relations and the
use of the local equilibrium hypothesis.

3.1. Concentration and energy profiles

We now consider the case in which the system is forced out of equilibrium by imposing
concentration and/or temperature differences at the boundaries, that is, by imposing ρ0 �= ρL+1

and/or T0 �= TL+1. If we do so, then the system will eventually attain a nonequilibrium
stationary state, with well-defined concentration and mean energy profiles, ρi and 〈Ei〉, as
a function of the position i in the system. Related profiles have been studied in detail for
random-halves and other stochastic models in [15, 21].

The transport equations can be easily derived by recalling that the total energy Ei at site
i at time t + 1 is given by the energy ei that was there at time t, plus the energy brought in by
the walkers that arrived in that time step, minus the amount taken by the walkers that left:

Ei = ei +
(
s+
i−1 + s−

i+1

) − (
s+
i + s−

i

)
. (3.4)

Taking means, we obtain

〈Ei〉 = 〈ei〉 + p 〈ei−1〉 + q 〈ei+1〉 − p 〈ei〉 − q 〈ei〉 = p 〈ei−1〉 + q 〈ei+1〉 + r 〈ei〉 . (3.5)

A similar equation holds for particle transport. In the stationary state, 〈Ei〉 = 〈ei〉, and hence
the stationary profiles satisfy

〈ni〉 = p 〈ni−1〉 + r 〈ni〉 + q 〈ni+1〉 ; (3.6)

〈Ei〉 = p 〈Ei−1〉 + r 〈Ei〉 + q 〈Ei+1〉 . (3.7)

We denote by ρi := 〈ni〉 the stationary mean occupation number at site i, and by
Ti := 〈Ei〉 /ρi the local temperature there.

3.2. Thermodynamic fluxes and forces

The mean energy and particle fluxes between sites i and i + 1 are given by

Ju = p 〈Ei〉 − q 〈Ei+1〉 = pρiTi − qρi+1Ti+1, (3.8a)

Jρ = pρi − qρi+1. (3.8b)

To obtain the continuum (diffusive) limit, we first express ρi, Ti, ρi+1 and Ti+1 as Taylor series
around the position x = (i + 1/2)δx, where δx is the distance between neighbouring sites on
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the chain. Next, we transform ρ → cδx, Ju → juδt and Jρ → jρδt , where δt is the time
interval between successive steps, so the quantities c, ju and jρ are a proper density and fluxes,
respectively. These operations yield

juδt = (p − q)cT δx − 1
2 (p + q)(δx)2∇(cT ) + O(δx3) (3.9a)

jρδt = (p − q)cδx − 1
2 (p + q)(δx)2∇c + O(δx3). (3.9b)

The continuum limit is achieved by dividing through by δt and taking the limit in which
δt, δx and p −q tend to 0, in such a way that the ratios (δx)2/δt and (p −q)/δx remain finite.
Thus, we can define the drift velocity

v := lim
δt→0,δx→0

(p − q)δx/δt (3.10)

and the diffusion constant

D := 1
2 lim

δt→0,δx→0
(p + q)(δx)2/δt, (3.11)

in terms of which the above equations become

ju = −D∇(cT ) + vcT (3.12a)

jρ = −D∇c + vc. (3.12b)

These should be compared with

ju = L11∇(1/T ) + L12∇(−μ/T ) (3.13a)

jρ = L21∇(1/T ) + L22∇(−μ/T ) (3.13b)

from the theory of linear thermodynamics [20, 22]. Using (3.2) and (3.3), we obtain

ju = −L11(∇T )/T 2 + L12 [(∇T )/T − (∇c)/c + ∇ν] (3.14a)

jρ = −L21(∇T )/T 2 + L22 [(∇T )/T − (∇c)/c + ∇ν] . (3.14b)

Setting ∇T = ∇c = 0, we find

L12∇ν = vcT and L22∇ν = vc. (3.15)

If instead we set ∇T = ∇ν = 0, then

L12/c = DT and L22/c = D. (3.16)

Finally, if we set ∇c = ∇ν = 0, then

L11/T 2 − L12/T = Dc and L22/T − L21/T 2 = 0. (3.17)

From these equations, we obtain

L11 = 2DT 2c; L12 = L21 = DT c; (3.18)

L22 = Dc; ∇ν = v/D. (3.19)

Thus, the Onsager reciprocal relations [22] are satisfied, and νi is determined as an external
potential due to the overall current generated by the bias.

While these results are satisfactory, it should be noted that we made a rather cavalier use
of (3.2) and (3.3), namely, we identified the temperature at site i as the quantity 〈Ei〉 / 〈ni〉,
whereas (3.2) tells us that the local temperature is actually the stochastic variable Ti = Ei/ni ;
furthermore, we substituted the remaining ni in (3.3) by ciδx = ρi = 〈ni〉. These substitutions
are, of course, not generally valid; however, they can be justified when the fluctuations in energy
and number of particles are small compared to their mean values.
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4. Spatial correlations of the energy

We now turn to the main consideration of the paper, the origin of the spatial correlations
between the values of energy at different sites, which develop due to the imposition of a
temperature gradient. To this end, we denote by Ci,j := 〈EiEj 〉 − 〈Ei〉〈Ej 〉 the stationary-
state energy correlations between sites i and j . To simplify the notation, we use the difference
operators 	(i) and 	(j) which act on functions of two variables Ci,j as

[	(i)C]i,j := pCi−1,j + rCi,j + qCi+1,j ; (4.1)

[	(j)C]i,j := pCi,j−1 + rCi,j + qCi,j+1. (4.2)

4.1. Exact equation for stationary-state energy correlations

Using the above notation, it follows from the previous section that the evolution equation for
the average energy is 〈Ei〉 = 	(i) 〈ei〉, and thus

〈Ei〉 〈Ej 〉 = 	(i)	(j)[〈ei〉〈ej 〉], (4.3)

so that this part of the correlations Ci,j factorizes.
It remains to evaluate 〈EiEj 〉. To do so, we rewrite this quantity in terms of the energies

ei and ej at sites i and j before the move, and the amounts of energy moving in each direction
from each site:

〈EiEj 〉 = 〈[
ei +

(
s+
i−1 + s−

i+1

) − (
s+
i + s−

i

)]
.
[
ej +

(
s+
j−1 + s−

j+1

) − (
s+
j + s−

j

)]〉
. (4.4)

We expand the product and consider the resulting terms, which are means of products of
two random variables, of the form

〈
s+
i−1s

+
j+1

〉
. According to the master equation (2.1),

these random variables are independent if their indices are different, giving, for example,〈
s+
i−1s

+
j+1

〉 = 〈
s+
i−1

〉〈
s+
j+1

〉
if i −1 �= j + 1. In particular, this is the case for every pair of products

provided |i − j | > 2.
If, on the other hand, |i − j | � 2, then there are terms in the product for which the indices

are the same: for example, if j = i + 1, then s−
i+1 = s−

j . In this case, the mean of the product is
no longer the product of the means, and we must calculate it explicitly. For example, we have

〈
s+
i |ei, l

+
i , mi

〉 = l+
i

mi

ei;
〈
s+
i

2|ei, l
+
i , mi

〉 = l+
i

(
l+
i + 1

)
e2
i

mi(mi + 1)
. (4.5)

We must then average the expressions over the trinomial distribution for l+
i and l−i given mi.

Note that the right-hand side of the second equation is not the square of the first equation—a
correction term has arisen. These corrections are what eventually give rise to the long-range
energy correlations.

We finally obtain, after some messy algebra, which we confirmed via a computer algebra
package, the following exact equation for the spatial correlations Ci,j in the stationary state:

Ci,j = 	(i)	(j)Ci,j + 2λij , (4.6)

with λij a symmetric matrix given by

λij =

⎧⎪⎪⎨
⎪⎪⎩

p(1 − p)κi−1 + r(1 − r)κi + q(1 − q)κi+1 if j = i;
−prκi − qrκi+1 if j = i + 1;
−pqκi+1 if j = i + 2;
0 otherwise,

(4.7)
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where we have defined

κi :=
〈

e2
i

mi + 1

〉
. (4.8)

Equation (4.6) is essentially a discrete Poisson equation, with source terms 2λij .
The boundary conditions are Ci,j = 0 whenever i or j is equal to 0 or L + 1 since the

stochastic reservoirs at positions 0 and L + 1 are independent of all other quantities in the
system (and of each other). The exceptions to this are C0,0 and CL+1,L+1, which are given by
the variances of the distributions in the reservoirs.

The above equations may be simplified by introducing

gi,j := Ci,j − 2δij κi, (4.9)

where δij is the Kronecker delta, which is 1 when i = j and 0 otherwise. Substituting this
expression in (4.6) gives that gi,j satisfies the following simpler equation:

gi,j = 	(i)	(j)gi,j + 2μiδij , (4.10)

with source terms

μi := pκi−1 + qκi+1 + (r − 1)κi . (4.11)

Note that the only source terms in (4.10) are now on the diagonal. The boundary conditions
are gi,j = 0 when i = 0, i = L + 1, j = 0 or j = L + 1. We thus have a discrete Poisson
equation in a square, with zero boundary conditions and a line source term on the diagonal.

We can test this equation in the simplest case in which there is no energy (temperature)
gradient. In this case, the reservoirs are at the same temperature β := β0 = βL+1, so that
in fact the temperature is constant throughout the system, βi = β for all i. Under these
conditions, we know that the energy distribution factorizes; hence, there must be no energy
cross-correlations. Indeed, in this case, we can evaluate κi exactly to obtain κi = ρi/β

2, and
(4.11) then gives

μi = 1

β2
[pρi−1 + qρi+1 + (r − 1)ρi] = 0 (4.12)

since ρi satisfy precisely this discrete equation. Thus, in the absence of a temperature gradient,
gi,j satisfy gi,j = 	(i)	(j)gi,j for all i and j , with no source terms. The zero boundary
conditions then imply that gi,j is identically zero.

Substituting this result back into (4.9), we obtain in this constant temperature case

Ci,j = 2δij κi = 2
ρi

β2
δij . (4.13)

The term 2δij κi can thus be regarded as the contribution to the energy correlation matrix which
arises simply because Ci,i necessarily has a nonzero on-site value, given by

Ci,i = 〈
E2

i

〉 − 〈Ei〉2 = 2κi = 2ρi

β2
. (4.14)

Referring back to definition (4.9) of gi,j , we see that this quantity can thus be viewed as
containing the long-range part of the correlations, resulting from the imposition of temperature
gradients. This is similar to results of previous work in the case of a single transported quantity
[7, 11].

We remark that the physical meaning of the terms κi = 〈
e2
i

/
(mi + 1)

〉
, which form the

source terms of the long-range correlations, and thus in some sense are what gives rise to these
correlations, is not very clear.
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4.2. Local thermodynamic equilibrium approximation

The previous calculation is exact; however, to make further progress, we must make an
approximation in order to evaluate the terms κi appearing in the expression for the source μi

of the long-range part of the correlations when the system is in a nonequilibrium stationary
state. To do so, we will assume that local thermodynamic equilibrium is attained at each site.
By this we mean the assumption that the marginal distribution of the energy at each site i
is given by P(Ei |ni), with the distribution (2.7) which is found at equilibrium. This is an
uncontrolled approximation; however, we will see later that it is in very good agreement with
the numerical results. Note that κi involves only data at site i, and thus indeed depends only
on the marginal distribution at that site. Such a local thermodynamic equilibrium assumption
has recently been proved correct for the random-halves model, in the limit when the number
of sites goes to ∞, so the temperature gradient goes to zero [23].

Under the hypothesis of local thermodynamic equilibrium, we can use (2.7) to calculate
κi = 〈

E2
i

/
(mi + 1)

〉
, obtaining

κi = ρi

β2
i

= ρiT
2
i . (4.15)

We will use this approximate analytical form for κi in the remainder of the analytical
development.

From the above discussion, we see that the contributions to the onsite correlations Ci,i

split into two parts:

Ci,i = gi,i + 2κi. (4.16)

We can regard 2κi as a pure local contribution, and gi,i as the onsite part of the long-range
contribution. Within the local equilibrium approximation, we then obtain

gi,i = Ci,i − 2ρiT
2
i . (4.17)

The equations for the profiles of mean concentration and mean energy can be written as
follows:

pρi−1 + qρi+1 + (r − 1)ρi = 0; (4.18)

pρi−1Ti−1 + qρi+1Ti+1 + (r − 1)ρiTi = 0. (4.19)

For brevity, we introduce the linear operator Li[f ] := pfi−1 +qfi+1 + (r −1)fi = (	(i) −1)f .
The equations for the profiles then become Li[ρ] = 0 and Li[ρT ] = 0.

The correlation source is μi = Li[κ] = Li[ρT 2], where the latter equality again assumes
the local thermodynamic equilibrium approximation. Substituting Li[ρ] = 0 and Li[ρT ] = 0
into the expression for Li[ρT 2], we obtain that the source term μi in the local thermodynamic
equilibrium approximation is given by

μi = Li[ρT 2] = 1
2 (Ti+1 − Ti−1) [pρi−1(Ti − Ti−1) + qρi+1(Ti+1 − Ti)] . (4.20)

In the continuum diffusion limit, we have

L[f ] 	 [Df ′′ − vf ′]δt, (4.21)

with v,D are defined in equations (3.10) and (3.11), respectively, and ρ = cδx as before.
Then, the source of correlations μ(x) reduces to

μ(x) 	 L[ρT 2] 	 2Dc(x)[T ′(x)]2δtδx, (4.22)

as can also be verified directly from the continuum expressions. We remark that precisely
a quadratic dependence on the local temperature gradient of short-range energy correlations
was found numerically for the random-halves model [16].

10
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It should be noted that only the energy has long-range correlations: a calculation similar to
the above shows that the density correlations 〈ninj 〉 and the density–energy cross-correlations
〈Einj 〉 are both diagonal.

5. Numerical results

In this section, we present comparisons of the energy correlations as obtained from direct
simulations of the microscopic random-walk dynamics, with the approximate analytical results
derived in the previous section.

5.1. Numerical method

The boundary conditions in the numerical simulations are as follows. At each time step, the
number of particles n0 at the left bath is chosen from a Poisson distribution with mean ρ0,
and each of those particles is assigned an energy E with probability 1/T0 e−E/T0 . The same
is done at the right bath with appropriate temperature and density. At each site, the energy
of the particles is assigned via the microcanonical redistribution mechanism, and then each
particle jumps to a neighbouring site with the correct probabilities. Means and correlations
are determined by time averaging, after discarding a preliminary equilibration period.

The correlations from the direct numerical simulations are compared to ‘semi-analytical’
results obtained by solving the discrete Poisson equations (4.9) for the long-range part g of
the correlations, using the local equilibrium approximation (4.15) for the terms κi . A similar
numerical solution of the algebraic equations was recently employed in [13].

5.2. Temperature gradient in the absence of a concentration gradient

The simplest case with non-trivial correlations is to impose a linear temperature gradient
between two baths with temperatures T0 �= TL+1, but with a flat concentration gradient, i.e.
ρ0 = ρL+1 = ρ for all i, and without bias in the dynamics (p = q). In this case, the density
profile is flat throughout the system, ρi = ρ for all i. The profile of mean energy is linear:

〈Ei〉 = 〈E0〉 +
i

L + 1
(〈EL+1〉 − 〈E0〉) . (5.1)

Identifying as usual Ti := 〈Ei〉 /ρi , we can conclude that there is also a linear temperature
profile under these conditions; this is correctly obtained in simulations (not shown).

Figure 1(a) shows the long-range part of the energy correlations, gi,j , in this case.
Numerical results are compared to a numerical solution of the algebraic discrete Poisson
equation (4.9). In order to carry out this numerical solution, the source terms κi were assumed
to take their local equilibrium value ρ/β2

i , as described above. Despite this, we find very good
agreement between the numerical results obtained from direct simulation and the numerical
solution of the discrete diffusion equation. This holds everywhere, including for the onsite
contribution of gi,i .

Nonetheless, the agreement between the numerical and semi-analytical results is affected
by the fact that the local thermodynamic equilibrium approximation is not strictly correct.
As discussed in the introduction, the structure of the out-of-equilibrium measure is an open
problem. However, here we can obtain an indication of the error in the local thermodynamic
equilibrium approximation by comparing the value of κi = 〈

e2
i

/
(mi + 1)

〉
obtained from a

direct numerical average to the analytical value ρi/β
2
i obtained from the local thermodynamic

equilibrium assumption. This difference is shown in figure 2 for two different values of
system size L. We see that the marginal distribution is not quite given by the local equilibrium

11
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Figure 1. (a) Long-range part of the correlations, gi,j = Ci,j −2δij κi , for an imposed temperature
gradient and flat density profile, with L = 41, ρ = 10, T0 = 50, TL+1 = 10. Shown are the direct
numerical results, using the numerical values of Ci,j and κi , and the semi-analytical approximation
obtained by solving numerically the discrete Poisson equation (4.10) using the local equilibrium
assumption κi 	 ρi/β

2. In this and the following figures, each separate curve shows the stationary-
state energy correlations gi,j for a given position i as a function of j . (b) Rescaled correlations
Lgi,j in the absence of a density gradient, as a function of j/L, i = (L + 1)/2 and i = (L + 3)/4,
for the same parameter values as in (a) and different system sizes L. Onsite correlations gi,i are not
shown. The exact result in the continuum limit is shown as a solid line.
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Figure 2. Difference 	κi := κi − ρT 2
i of the value of κi obtained from the direct numerical

simulation and the analytical expression obtained with the local equilibrium assumption, for two
values of system size L. The differences 	μi between the corresponding results for μi obtained
by differentiation are also shown.

approximation, but that it gets closer as L increases, in agreement with the rigorous results
of [23].
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For the structure of the correlations gi,j away from the diagonal terms where i = j ,
the important quantities are the sources μi , which are given by differences of the κi as in
(4.11). The differences between the μi calculated by differentiating the numerically obtained
κi and those obtained by differentiating the local equilibrium expression are also shown in
figure 2. They are very close to 0, which is the reason for the excellent agreement between
the numerical and semi-analytical results for the correlations.

In fact, this case (absence of a concentration gradient) is simple enough to solve explicitly
in the continuum limit. Taking g(i, j) → G(x, y)δxδy, equation (4.10) can be rewritten in
the continuum limit as

∂G(x, y)

∂x2
+

∂G(x, y)

∂y2
= 4c[T ′(x)]2δ(x − y), (5.2)

with boundary conditions G(x = 0, y) = G(x = L, y) = G(x, y = 0) = G(x, y = L) = 0.
The solution of this equation is readily found to be

G(x, y) = 2c(∇T )2

L

{
x(L − y), if y > x

y(L − x), if y < x.
(5.3)

This result is similar to those of [7, 11], but with the difference that the concentration c now
appears explicitly in the result.

As was pointed out in [16], the correlations for a system of size L decay as 1/L if
the boundary conditions are fixed (i.e. the values of the density and temperatures at the
boundary are the same for different values of the system size L). Figure 1(b) shows the
rescaled correlations Lgi,j for different system sizes compared to (5.3). In the figure, we have
thus scaled space to the interval [0, 1] and rescaled the correlations by multiplying them by L.
The various curves indeed converge to the limiting (continuum) form as L → ∞. Note that
the apparent 1/L scaling arises from the δx term in the passage to the continuum limit: fixing
the total system size and doubling the number of sites corresponds to halving δx.

5.3. Combined temperature gradient and concentration gradient

We now consider the effect of imposing both energy and concentration gradients, although
still without bias in the motion (p = q). The profiles of ρi and of 〈Ei〉 = ρiTi are now both
linear, so Ti = 〈Ei〉 /ρi is a ratio of two linear functions, but is no longer itself linear.

Figure 3 shows the numerical and semi-analytical results in this case. We find a skewing
effect on the correlations, which is again in excellent agreement with the numerical results. The
results are qualitatively very similar to those in [16], despite the differences in the nature of the
models discussed in the introduction. Figure 4 shows the scaling of the correlations (obtained
from the semi-analytical results) with system size. Again they converge to a continuum limit,
corresponding to the solution of the continuous diffusion equation with sources given by
(4.22).

5.4. Effect of bias (p �= q)

Upon introducing a bias in the directionality of the walkers’ jumps, that is by putting p �= q,
we obtain mean density and energy profiles which are no longer linear. Rather, they are given
by [19]

ρi = ρ0 +
1 − αi

1 − αL+1
(ρL+1 − ρ0) , (5.4)
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Figure 3. Long-range part of the correlations, gi,j , with imposed temperature and density gradients.
The parameters are L = 41, T0 = 50 and TL+1 = 10. The bath densities are ρ0 = 10 and ρL+1 = 20
in (a), and are reversed in (b). The direct numerical and semi-analytical results again agree very
well.
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Figure 4. Scaling of correlations Lgi,j , obtained from the semi-analytical solution, for different
system sizes L, with parameters as in figure 3(a), for i = (L + 1)/2 and i = (L + 3)/4.

〈Ei〉 = 〈E0〉 +
1 − αi

1 − αL+1
(〈EL+1〉 − 〈E0〉) , (5.5)

where α := p/q and the quantities ρL+1, ρ0, 〈EL+1〉 and 〈E0〉 are fixed by the boundary
conditions.

Figure 5(a) shows the comparison between the numerically obtained correlations and the
semi-analytical solution, for a situation with a flat density profile (i.e. ρL+1 = ρ0), an imposed
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Figure 5. (a) Comparison of numerical and semi-analytical correlations gi,j for system size L =
41, with parameters ρ = 10, T0 = 50, TL+1 = 5, as a function of j , for i = 3, 4, 5, 8, 11, 16, 21
and 30 from top to bottom. There is a bias in the dynamics, with p = 0.35 and q = 0.4.
(b) Comparison of the correlations for L = 41 and L = 81, with the same parameters as in (a).
The numerical values of the correlations are the same for i not too large. The lines are shown as a
guide for the eye
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Figure 6. Rescaled semi-analytical correlations Lgi,j for biased dynamics as a function of j/L,
for system sizes L = 41, L = 81 and L = 161 and different i. In order to have a well-defined
continuum limit, q − p is halved when the system size is doubled, with q = 0.4 fixed. Parameters
are ρ = 10, T0 = 50, TL+1 = 5.

temperature gradient (which for constant density means that 〈EL+1〉 �= 〈E0〉) and a bias to the
left. Again we find excellent agreement between the numerical results and the semi-analytical
results. Note, however, that for values of i around 30 and larger, the correlation function gi,j is
very small for all values of j (j �= i). Hence, the energies at sites corresponding to large enough
values of i and j are essentially uncorrelated. The reason for this is that, in the presence of a
bias, the source of the correlations given in equation (4.22) decays exponentially as i increases.
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Thus, in this case, since the bias is to the left, we expect the source of the correlations
to be appreciable only up to distances of a few times the decay length λ ∼ 1/| ln(α)| (see
equation (5.5)) from the left boundary, and the effect of the right boundary to become negligible
if the size of the system L � λ. Indeed, figure 5(b) compares the correlations for two different
system sizes with the same parameters. Clearly, the numerical values of the correlations are
essentially independent of system size and are negligible over a large part of the system.

Nonetheless, as was shown in section 3.2, it is possible to obtain a well-defined continuum
limit for the energy correlations in the case of biased dynamics, provided the amount of bias
changes in the correct way: the bias q − p must be halved when the system size doubles,
in addition to performing the same linear rescaling of space as in the other cases. Figure 6
confirms convergence to the continuum limit under these conditions.

6. Conclusions

By studying an extremely simple model of coupled transport of mass and a second conserved
quantity, which we called energy, we have shown that the ubiquitous long-range correlations
in this energy, whose transport depends on the motion of the mass, are present in the
nonequilibrium stationary state, even though this quantity is completely passive. We were able
to write down the equation describing the long-range spatial correlations for the energy in the
system and found that the structure of these correlations is remarkably similar to those found
in more realistic models, as well as to the results of studies using fluctuating hydrodynamics.
We thus conclude that the origin of these long-range correlations is already present in this
simple model and that a study of such models can go at least part of the way to explaining and
quantifying the origin and structure of correlations in nonequilibrium systems. Nevertheless,
we hope to be able to extend the methods and results to cases where the particle motion is
modified by the energy carried by the particles.
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Appendix. Derivation of energy partitioning distribution and entropy at a site

The distribution for the microcanonical partitioning of energy among the particles at each site
can be calculated as follows. First, given that the particles at each site are assumed to be in
a state of microcanonical equilibrium, we can determine the probability that l+

i and l−i out of
the mi particles at site i have combined energies s+

i and s−
i respectively, when the total energy

at the site is ei , as the quotient of the number of states consistent with these requirements
over the total number of states available to the system. These numbers are proportional to the
corresponding structure functions [24], given by

ω(E,N, V ) :=
∫

δ (HN(p, q) − E) dp dq, (A.1)
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where HN(p, q) is the N-particle Hamiltonian describing the dynamics at each site, and the
integration is carried out over the phase space of the N particles. If we assume that the particles
are an ideal gas, then

HN(p, q) =
N∑

j=1

|pi |2
2m

, (A.2)

where m is the mass of the particles, and the required probability is given by

P
(
s+
i , s−

i

∣∣ l+
i , l−i , mi, ei

)
(A.3)

= ω
(
s+
i , l+

i , V
)
ω

(
s−
i , l−i , V

)
ω

(
ei − s+

i − s−
i , mi − l+

i − l−i , V
)

ω(ei,mi, V )
. (A.4)

For a d-dimensional ideal gas, we have

ω(E,N, V ) = (2πm)Nd/2ENd/2−1V N

�(Nd/2)
, (A.5)

where V is the volume accessible to the particles at each site, which we take as unity, and �(·)
is the gamma function. Using this expression in (A.3) yields

P
(
s+
i , s−

i

∣∣ l+
i , l−i , mi, ei

)
(A.6)

= �(mid/2)

�
(
l+
i d/2

)
�

(
l−i d/2

)
�

([
mi − l+

i − l−i
]
d/2

) (A.7)

× (
s+
i

)l+
i d/2−1(

s−
i

)l−i d/2−1

(
ei − s+

i − s−
i

)[mi−l+
i −l−i ]d/2−1

e
mid/2−1
i

, (A.8)

which, when d = 2, simplifies somewhat, giving

P
(
s+
i , s−

i

∣∣ l+
i , l−i , mi, ei

)
(A.9)

= �(mi)

�
(
l+
i

)
�

(
l−i

)
�

(
mi − l+

i − l−i
)(

s+
i

)l+
i −1(

s−
i

)l−i −1

(
ei − s+

i − s−
i

)mi−l+
i −l−i −1

e
mi−1
i

. (A.10)

Similarly, the classical entropy of the 2D gas at each site is given by [20]

S(ei,mi, V ) = ln[ω(ei,mi, V )/mi!] + miσi ∼ mi ln
[
V ei

/
m2

i

]
+ misi, (A.11)

taking the Boltzmann constant kB = 1, where si and σi are constants (i.e. they are independent
of ei,mi and V ) which can vary from site to site.
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[19] Reséndiz Antonio A M and Larralde H 2005 The statistics of diffusive flux J. Stat. Mech. Theor. Exp.

2005 P08012
[20] Callen H B 1985 Thermodynamics and an Introduction to Thermostatistics 2nd edn (New York: Wiley)
[21] Eckmann J P and Young L S 2004 Temperature profiles in Hamiltonian heat conduction Europhys. Lett.

68 790–6
[22] De Groot S R and Mazur P 1984 Non-Equilibrium Thermodynamics (New York: Dover)
[23] Ravishankar K and Young L-S 2007 Local thermodynamic equilibrium for some stochastic models of

Hamiltonian origin J. Stat. Phys. 128 641–65
[24] Reichl L E 1998 A Modern Course in Statistical Physics 2nd edn (New York: Wiley-Interscience)

18

http://dx.doi.org/10.1146/annurev.pc.45.100194.001241
http://dx.doi.org/10.1103/PhysRevA.29.2845
http://dx.doi.org/10.1007/BF01011740
http://dx.doi.org/10.1088/0305-4470/16/18/029
http://dx.doi.org/10.1103/PhysRevA.42.1954
http://dx.doi.org/10.1103/PhysRevE.54.1208
http://dx.doi.org/10.1088/1742-5468/2007/07/P07023
http://dx.doi.org/10.1103/PhysRevLett.101.120604
http://dx.doi.org/10.1088/1751-8113/42/2/025001
http://dx.doi.org/10.1007/s00220-005-1462-y
http://dx.doi.org/10.1007/s10955-007-9318-9
http://dx.doi.org/10.1103/PhysRevLett.86.5417
http://dx.doi.org/10.1023/A:1025726905782
http://dx.doi.org/10.1088/1742-5468/2005/08/P08012
http://dx.doi.org/10.1209/epl/i2004-10291-5
http://dx.doi.org/10.1007/s10955-007-9335-8

	1. Introduction
	2. Coupled transport model
	2.1. Master equation
	2.2. Equilibrium state

	3. Thermodynamics
	3.1. Concentration and energy profiles
	3.2. Thermodynamic fluxes and forces

	4. Spatial correlations of the energy
	4.1. Exact equation for stationary-state energy correlations
	4.2. Local thermodynamic equilibrium approximation

	5. Numerical results
	5.1. Numerical method
	5.2. Temperature gradient in the absence of a concentration gradient
	5.3. Combined temperature gradient and concentration gradient
	5.4. Effect of bias (p neq q)

	6. Conclusions
	Acknowledgments
	Appendix. Derivation of energy partitioning distribution and entropy at a site
	References

